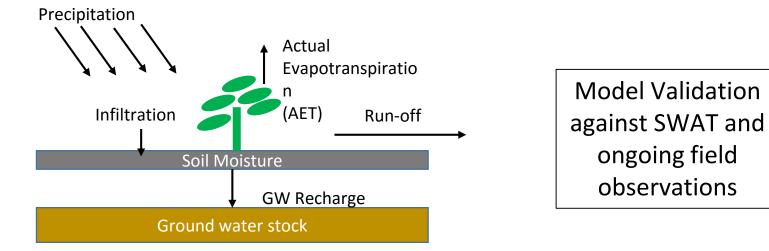
PoCRA Water Budget

PoCRA Team, IIT Bombay

7th April 2018

Outline

- JSA and PoCRA water budgets
- PoCRA Architecture
- User-friendliness of PoCRA budget and resources required for same
- Roll Out and future scope


JSA and PoCRA water budgets

Daily vs Aggregate water balance model

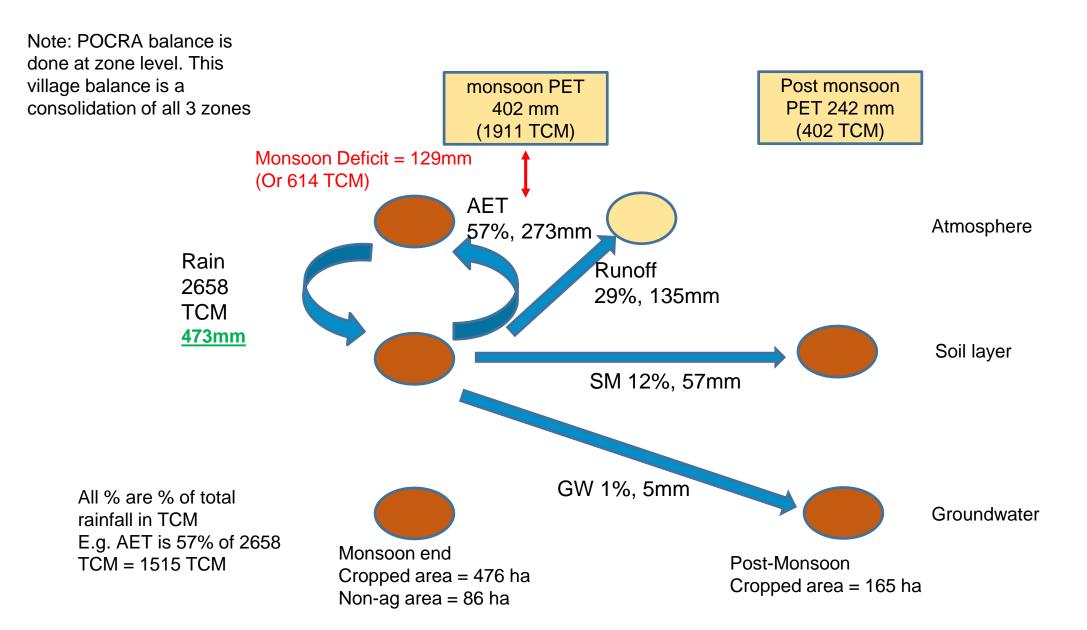
	JSA water balance computation	PoCRA Water Balance computation
1	The Strange's table provides the run-off in terms of percentage of the monsoon rainfall for Good, Average and Bad catchments. These are gross estimates.	Runoff is computed based upon SCS curve number methodology which is calibrated with SWAT, an international standard.
2	Aggregate rainfall model.	Daily time-step. Sensitive to dry spells and peak rainfall events.
3	It does not take soil conditions or land-use into account	It takes location specific soil and LU properties. Makes the computation of field capacity, wilting point, run-off, recharge more accurate. This helps, e.g., in selection of farm-ponds, interventions.
4	It does not give kharif water stress. Protective irrigation is assumed to be 10 percent of crop water requirement.	It gives crop-specific kharif water stress based upon the rainfall pattern and need for protective irrigation.
5	It does not split infiltration into soil moisture (SM) and groundwater (GW) recharge values.	It gives the soil moisture and groundwater available . Knowing SM helps in knowing protective irrigation requirements. Knowing GW helps in deciding if wells will be useful.
6	It does not give any vulnerability maps.	It gives the vulnerability maps for the identification of vulnerable farmers.
7	It works at village level.	It allows for zone-wise analysis for better targeting.

Limitations of both PoCRA and JSA: do not account for sub surface ground water flows. Model output quality limited by quality of input data being used (eg - rainfall, soil texture etc)

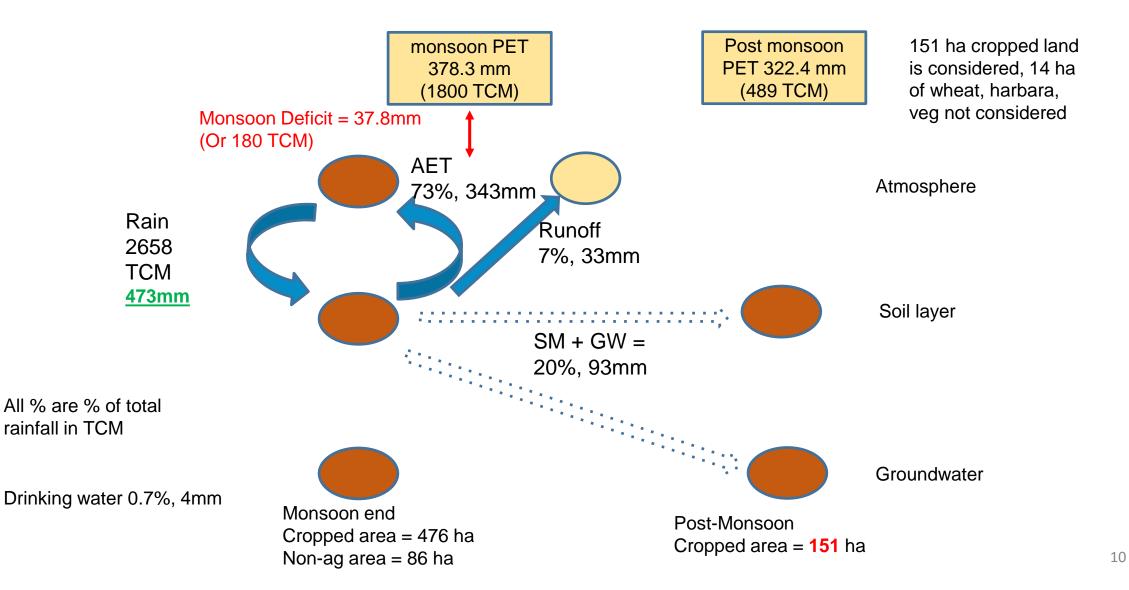
PoCRA Point level Water balance and Validation

Component	Method (Reference)	Data source/ Ref
Rainfall	Input	Maharain.gov.in
run-off, infiltration	SWAT method based on SCS-Curve number adjusted for slope	SWAT theory
Potential crop ET (PET)	Modified Penman method	ETO: WALMI, Kc: FAO
Actual crop ET (AET)	FAO methodology	Soil properties: FC, WP, Crop root depth
GW recharge	SWAT methodology	Soil conductivity function of soil texture input
Soil moisture	Mass balance	

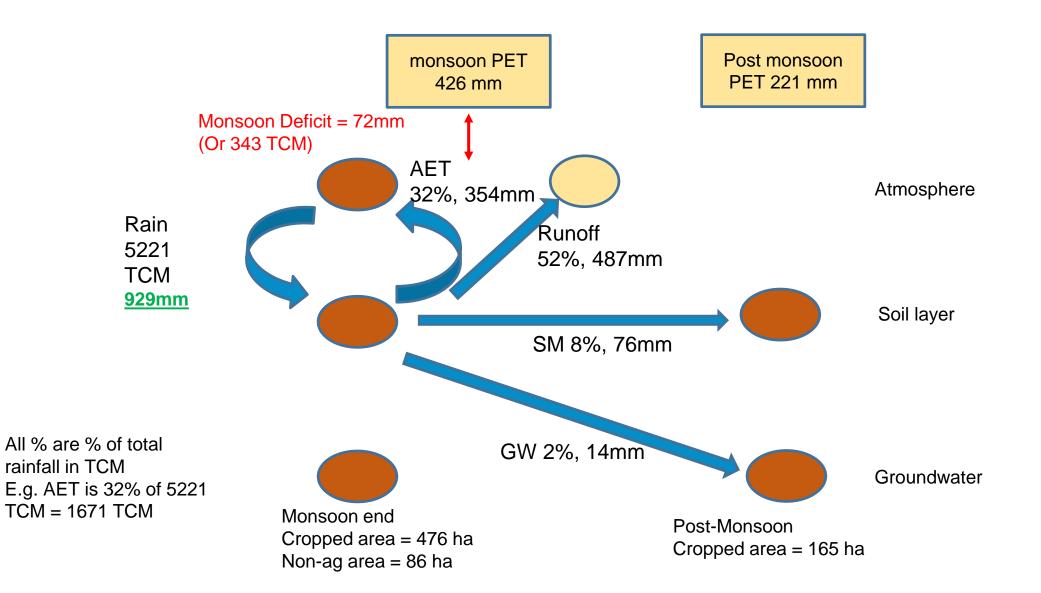
Validation and Adaptation

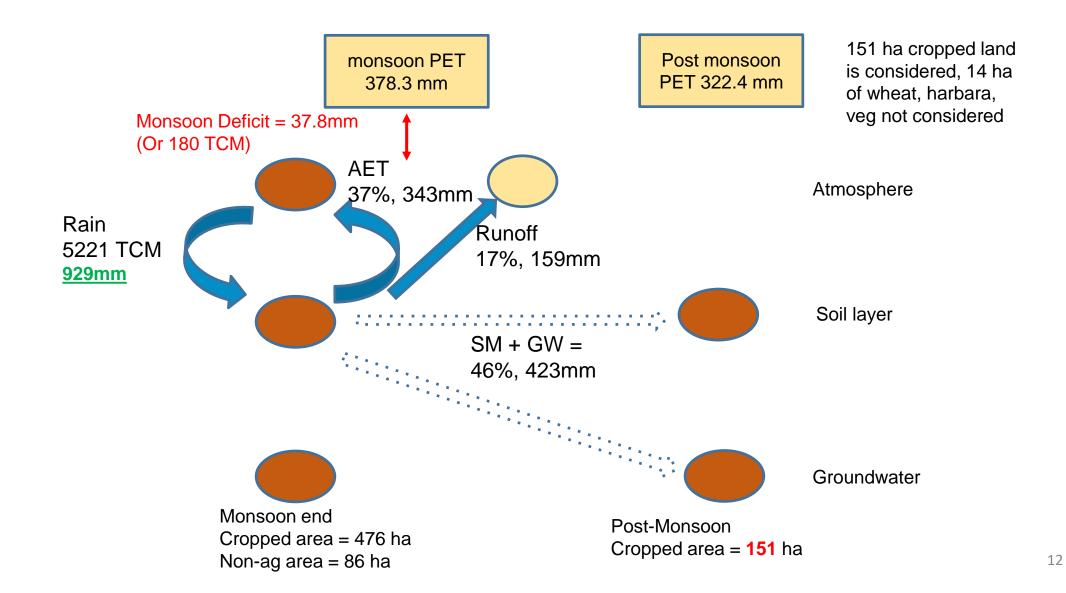

- Model validation has been done against SWAT (Soil and Water Assessment Tool), the current industry standard
 Ourrent model is light-weight version of SWAT for ease of use
 Output is consistent with SWAT output
- Input parameters published for Indian conditions by institutes such as WALMI and SAUs have been used
- Engagement with SAUs and WALMI
 - Further refinement of input parameters such as crop ETs, soil parameters
 - Farm level and village level balance validation

Comparison of JSA and PoCRA budget with Examples

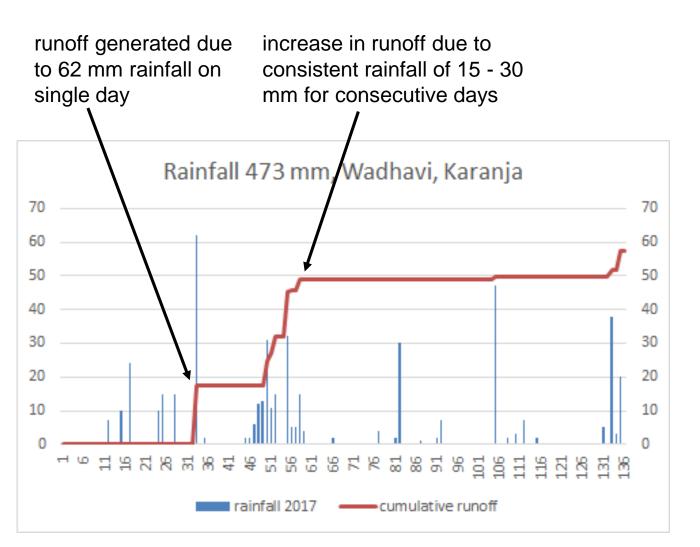

Example: Wadhvi Village Karanja Cluster WB

Wadhavi village, Washim			Legend
Total area	562 ha		zones Village LULC
Total rainfall (2017)	473 mm		Agricultural Land-Crop Land-Kharif Crop Agricultural Land-Crop Land-Two Crop area Agricultural Land-Fallow-Current Fallow
Single kharif crop area			Built Up-Built Up (Rural)-Built Up area (Rural) Forest-Deciduous (Dry/Moist/Thorn)-Open Forest-Scrub Forest
Soybean	290 ha	LULC	Wastelands-Scrub land-Open scrub Waterbodies-Reservoir/Tanks-Dry-Rabi extent
Moog	15 ha		Legend
Udid	26 ha		Clipped Zones soil texture
Long kharif crop area		Wadhavia	Clayey Gravelly clay loam
Cotton	52 ha		Graveliy sandy day loam Habitation Mask Sandy clay loam
Tur	93 ha		Waterbody Mask
Rabi crop area		soil	
Wheat + Harbara + vegetables	20 ha		
Non agricultural area			Zones Wadhavi-1 Wadhavi-2
Fallow	30 ha		Wadhavi-3
Grass	26 ha		
Forest	30 ha	POCRA zone map	


Wadhvi 2017 POCRA village level water balance

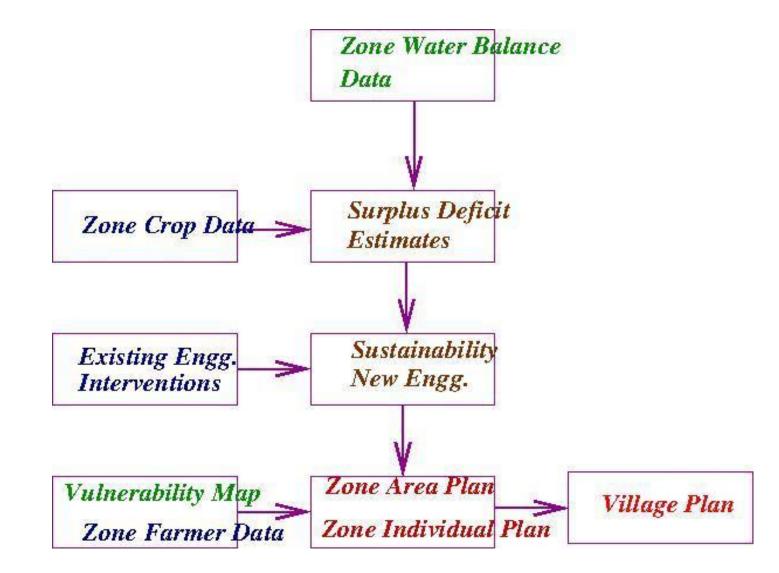

Wadhvi 2017 JYS village level water balance

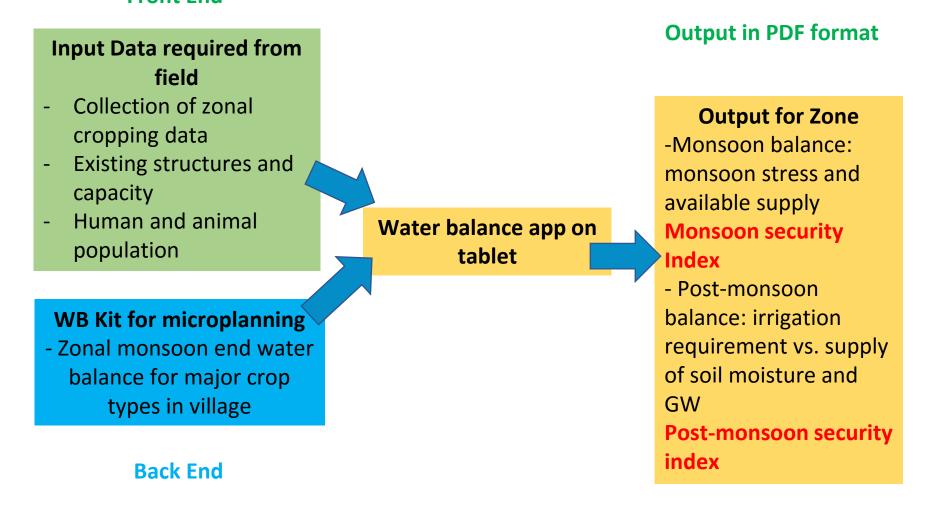
Wadhvi 2016 POCRA village level water balance

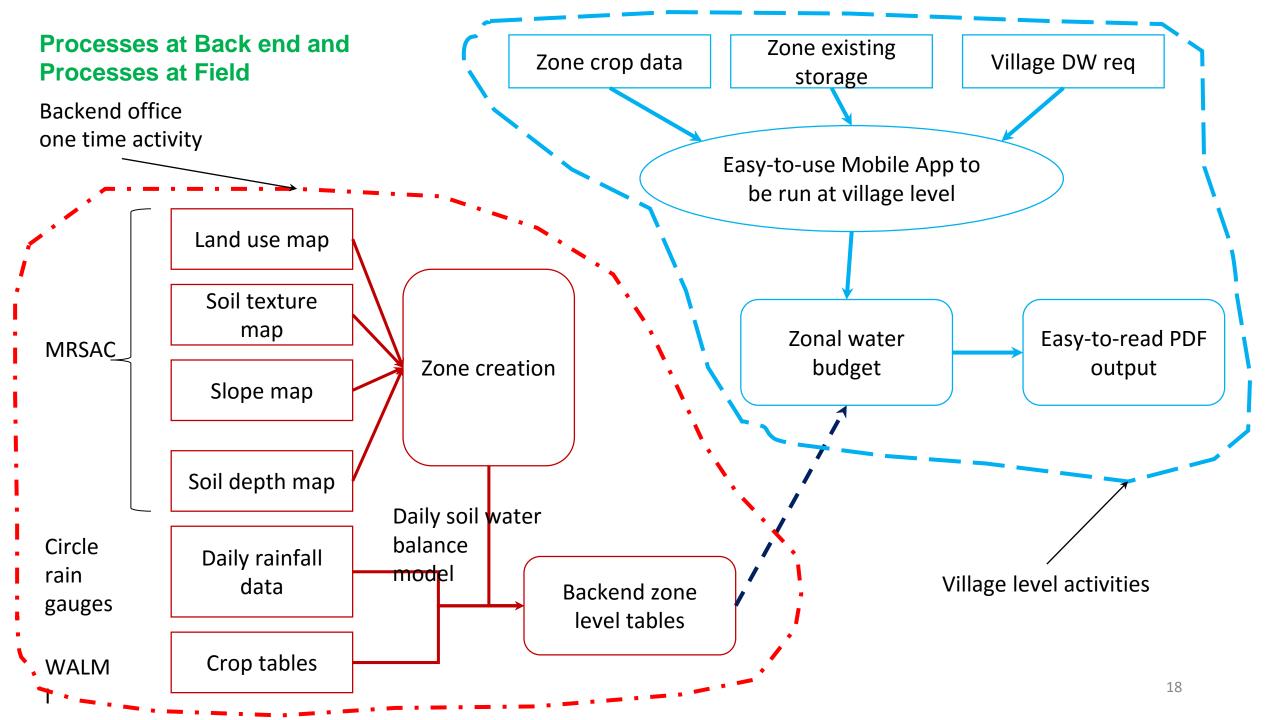


Wadhvi 2016 JYS village level water balance

Rainfall – 473 mm	JYS	PoCRA		
Runoff generated	7% or 186 TCM (as per aggregate rainfall using Strange's table)	29% or 771 TCM (as per daily rainfall events using SCS CN methodology and soil properties)		
Current storage available for use	203 TCM	203 TCM		
Kharif water demand	1800 TCM (full K + 1/2LK)	1911 TCM (full K)+ (LK PET upto monsoon end)		
Kharif deficit	180 TCM (10% of demand)	614 TCM (as per soil and crop type calculation)		
GW Recharge Soil Moisture	532 TCM or 93mm total	GW Recharge: 5mm or 27 TCM Soil Moisture: 57mm		
Water available for rabi	527 TCM (assumes all SM+GW to be available for Rabi since separate values not known. Current storage-PI available for Rabi)	 261 TCM (¾ of GW+ ½ of current storage+SM available in Rabi area) (note this is reduced because most water is in soil moisture which is a local stock) 		
Rabi + summer water demand	487 TCM (322 mm)	402 TCM (242 mm over 165 ha)		
Rabi water use index (supply /	1.08	0.6 13		


Rainfall-Runoff relation


- Runoff typically depends on rainfall pattern and distribution
- Sufficient amount of rainfall on consecutive days leads to wetting of soil, after which 30 mm and above daily rainfall is sufficient to generate runoff
- Similarly very high amount of rainfall on any day also results in runoff
- Both these scenarios are seen in adjacent figure and captured in the model


The PoCRA Architecture

Basic Outline of Water-balance enabled planning

Overall Usage Methodology: Inputs an Outputs

On Field User Friendliness of PoCRA Water Budget Model

In the Field: PoCRA App Interface

Cropping Pattern

₱ 🖬 ⊕ 🕴	¥8 🛱 ₩ 🖘 🖬 📶 .⊪ 91% 🗎	11:37				
PoCRA						
पिके						
पिके	क्षेत्र (हेक्टर)					
बाजरी	30					
हरभरा	10					
गहू	20					
उडिद	30					
तूर	30					
कापूस	20					
सोयाबीन	20					
कुरण / गवत / गायरान	10					

Proposed मृद व जल संधारण कामांमुळे होणारे

SUBMIT

पुनर्भरण

एकूण उपलब्ध होणारे एकूण साठवण क्षमता कामाचे नाव

SAVE

Existing Storage Structures

∦ 👯 🛱 🐄 🖘 🖬 📶 ୷ 91% 🖹 11:35 🌐 🚺 тн ... PoCRA मद व जल संधारण कामांमुळे होणारे पुनर्भरण

•			
कामाचे नाव	एकूण साठवण क्षमता (TCM)	एकूण उपलब्ध होणारे पाणी (TCM)	
शेततळे -	11.00	5.50	
सलग समतल चर	2.25	1.58	
सिमेंट नाला बांध	12.00	8.40	
मजगी /पडकई	14.10	11.28	
सामुदायिक शेततळे	25.00	12.50	
नाला खोलीकरण	0.9	0.45	
एकूण	65.25	39.71	

नवीन कामाचा प्रकार

पिण्याच्या पाण्याची एकुण गरज

४.१ माणसे (TCM) 750 ४.२ जनावरे

SAVE

(TCM) EUU

SUBMIT

₩ ₩	*	\$ 🗭 Voi)	Â, 1	L. L	91%	11
PoCRA						
पिण्याच्या पाण्याची	एकुण	गरज				
४.१ माणसे 750	(TC	M)				
४.२ जनावरे 500	(TC	M)				
४.३ शेळ्या – मेंढ्या 100	(TC	M)				
४.४ कुक्कुट पालन 100	(TC	M)				
पेके						
पिके			क्षेत्र (हे	क्टर)		
बाजरी			30)		1
हरभरा	Ì		10)		1
गहू	Ì		20)]
उडिद	Î		30)		
SUBMIT			S	SAV	Έ	

Drinking Water Requirement

App available for downloading on google play store.

Can be used on Tablet as well as Smartphones

Water Budget Output Table in PDF format (to be simplified)

Wadhvi v	illage - 473mm -2017 Rainfall	Zone 1	Zone 2	Zone 3	Village
	Zone Area in hectare	423	60	179	662
	Monsoon protective irrigation req.				
	(deficit)	435.2	32.9	150.1	618.2
	Storage Available for Crops In				
Monsoon Balance	Monsoon	34.0	5.1	122.7	161.9
(TCM)	GW Available for Crops in Monsoon	4.7	0.2	1.2	6.2
	Monsoon Balance: Current Supply -				
	Demand	-396.5	-27.6	-26.1	-446.7
	Monsoon Protective Irrigation Index	0.09	0.16	0.83	0.27
	Rabi Total Water Requirement	162.5	11.5	230.6	404.6
	Drinking Water Requirement	0.0	0.0	39.4	39.4
	Water Available from Soil Moisture	35.9	2.6	35.7	74.2
	Water Available from GW	18.9	0.9	4.9	24.7
Post Monsoon	Storage Available for Crops in Rabi				
Balance (TCM)	Season	34.0	5.1	122.7	161.9
Dalalice (TCIVI)	Rabi Balance: GW				
	supply+SM+structures-Rabi Demand-				
	Drinking Water	-73.7	-2.9	-106.7	-183.3
	Post Monsoon Protective Irrigation				
	Index	0.55	0.75	0.60	0.59
	Water Available from Runoff	276.3	16.6	90.5	383.3
	Additional Water Available for				
Design (TCM)	Impounding	208.2	6.4	0	59.5
Note: Zone 3 has a	large reservoir currently				

App Features

- Coded into easy to use water budget app
- Requires minimal input from the field
 - Zone Level Cropping pattern
 - Existing Storage Structures in the zone
 - Village population for drinking water demand
- All computations done in app backend to display final output
- Can be used by cluster assistant, agricultural assistant as well as TAG
- One time process of zone creation
- Flexible in use: can be run on village as well as zone level
- Plugin run on each cluster to generate water balance and upload input data into app. This should be updated for every year rainfall.
- Dedicated back office staff and GIS specialists required to handle back end processes

पिके		
पिके	क्षेत्र (हेक्टर)	
बाजरी	30	1
हरभरा	10	
गहू	20	1
उडिद	30	t
तूर	30	t
कापूस	20	t
सोयाबीन	20	t
कुरण / गवत / गायरान	10	
Proposed मद व जल	े संधारण कामांमुळे होणारे	

Back End Processes: Description Of Plugin and Data requirement

Front End Inputs Need to Given by User

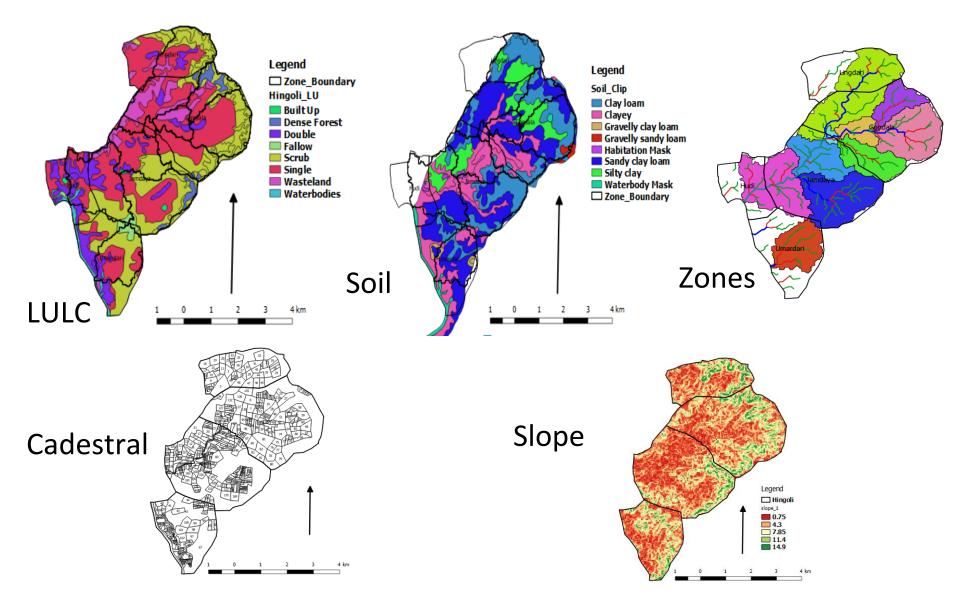
Cluster Boundary with zones
 Land Use Land Cover
 Soil
 Slope
 Cadastral

6 Rainfall

Back End Inputs used in the Plugin

Reference Evapotranspiration, ETo
 Crop Coefficients - Kc,
 Hydrologic soil Group, Curve Number
 % Sand, % Silt, % Clay
 Wilting Point, Field Capacity, Saturation
 Ksat, Bulk Density, Available water content
 Crop Root zone, Crop Depletion factor p

Plugin Options Colour Code Intervals Crop Selection


Sowing Threshold

Output Generated by Plugin

Cadastral Vulnerability Map
 Point wise Vulnerability Map
 Cadastral wise Vulnerability CSV
 Zone wise Computation CSV

Front end secondary data shape files are available for all PoCRA districts, can also be obtained for remaining districts²³.

Example: Gondala cluster inputs

Input layer pre processing : Back Office Support

Sr.No	Input	Processing	Output
1	Cluster Boundary	Project the cluster boundary with number of villages in UTM projection.	Cluster Shapefile with required spatial extent.
2	LULC	Using the cluster shapefile clip the LULC layer in UTM Projection	LULC layer with require spatial extent.
3	Soil	Using the cluster shapefile clip the soil layer in UTM Projection	Soil layer with required spatial extent.
4	Cadastral Map	Using the cluster shapefile clip the Cadastral layer in UTM Projection	Cadastral layer with required spatial extent.
5	DEM	Extraction of sub watersheds or zones from Dem	Zone layer with required spatial extent.
6	Cluster Boundary with zones	Intersection of cluster boundary and zone layer and naming of zones	Cluster boundary with number of zones
7	Slope	Extraction of slope layer from Dem	Slope layer with required spatial extent.
8	Rainfall	Full year rainfall data in CSV format in two columns days and Rainfall	Rainfall CSV file

One time operation to prepare zonal data shapefiles for all villages.

Repetitive operation to run the plugin for different rainfall scenarios and cropping pattern.

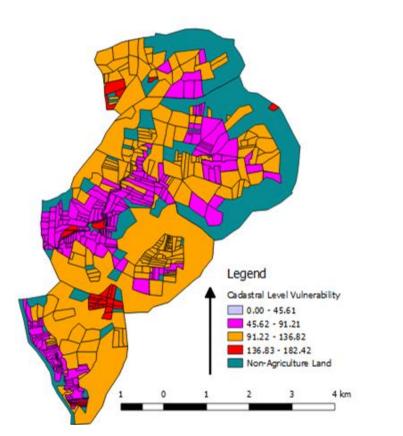
Dedicated personnel required for preprocessing of input layers and running the water budgets and uploading the output into app from backend

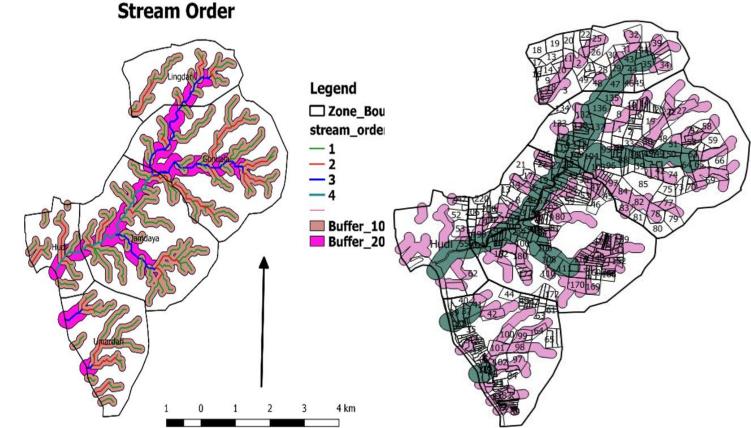
Backend Zone creation process: Activities

- Pre Processing of shapefiles.
 - Village shapefile
 - $\circ~$ clipping LULC for village
 - clipping Soil for village

• DEM Processing

- DEM download
- \circ $\;$ Extraction of slope and streams
- Extraction of micro watersheds around 200 ha


• Processing of zones - one time activity


- Intersection of micro watersheds with village boundary, cleaning of shapefile and merging of small watersheds to form zones, adding zone names and area in attribute table.
- Extra efforts If groundwater shapefiles are to be used.
- Selection and downloading rainfall data
- Preparing ETO file
- Running of plugin

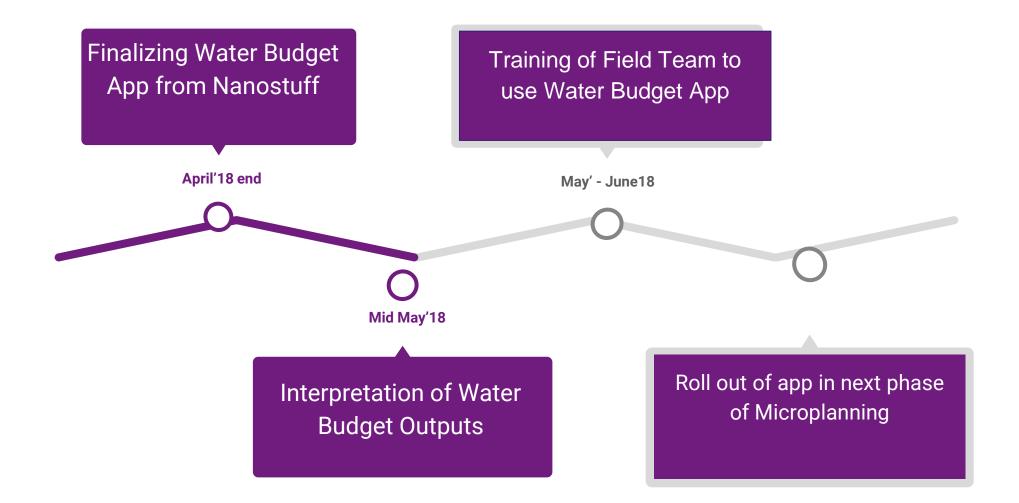
Water Balance Generation and uploading to App: Activities

- Zone wise input of data
 - Crop Data
 - Structures Data
 - Population Data
 - Water Balance Generated
 - Proposed structures data
 - Revised Cropping pattern New water balance table

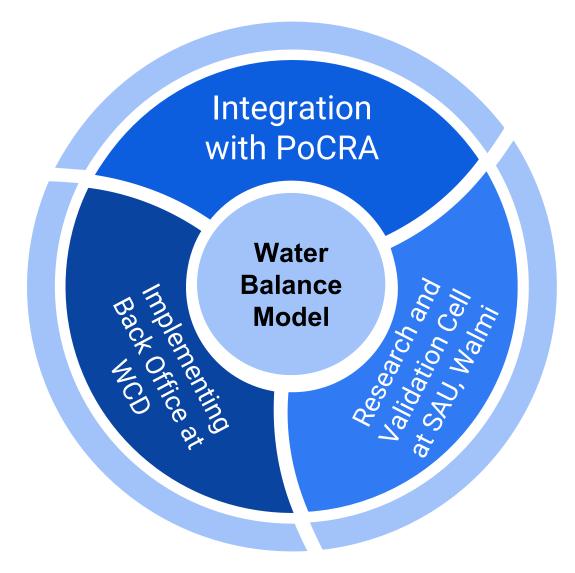
Outputs: Monsoon Farm Level Vulnerability map and Stream proximity map

Water Balance kit: Gondala Monsoon end balance

					GW		Soil	
		PET	AET	Monsoon	Recharge		Moisture	Post
		Monsoo	Monsoon	Deficit(PE	in	Runoff in	Monsoon	Monsoon
Crop	Area	n End	End	T-AET)	Monsoon	Monsoon	end	PET
Soyabean		453.8	345.9	107.9	29.1	251.4	81.8	0.0
Cotton		449.5	361.7	87.8	29.1	273.1	44.6	304.6
Udid		276.0	194.9	81.0	81.7	339.2	92.1	0.0
Tur		415.5	338.2	77.2	32.3	286.9	51.0	185.1
Wasteland		517.9	258.8	68.9	53.7	328.6	67.6	0.0
Scrub		634.0	298.5	43.6	51.5	304.6	54.4	0.0
Forest		778.9	368.6	102.1	54.3	250.6	35.5	0.0
Harbhara		0.0	0.0	0.0	0.0	0.0	0.0	250.0


Area for individual crops to come from field assessment

Roll Out in PoCRA


Field Level requirement

- Gathering or estimating zone wise cropping pattern data for village on field
- Currently agriculture assistant coordinates with the cluster assistant in estimating zonewise cropping pattern
- This can also be done by conducting FGD's with group of farmers in each zone
- Finalization of Water Budget App and its deployment to field (Finalization to happen in next 15-20 days, deployment from next Microplanning)
- Training field users to use Water Budget App (Training to be conducted before next microplanning when new field team is ready)
- Guidelines on Interpretation of outputs from water budget for intervention planning purpose
- Improvisation in Water Budget output table from app to make it easier for public comprehension

Roll Out at PoCRA Level: Timeline

Requirements for Roll Out at Maharashtra Level

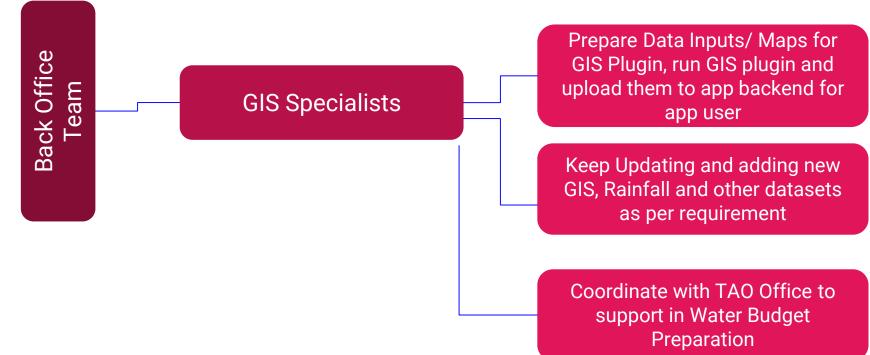
Watershed Planning Cells in SAU's

Initial Handholding from IIT

- Technology Transfer
- Support and Training

Watershed Planning cell at SAU

- 20-30 villages
- 2-3 Faculty Members
- 8-10 student projects
- GIS team


Validation of Data Inputs (GIS maps) and Adaptation of budget to field conditions

- Validate Soil, Landuse and other Maps
- Conduct Research on Yields, watering, economics
- Incorporate the research into Water Budget

Role of WALMI

- Interpretation of Water Budgets for Villages and development of village planning protocols
- Coordinate with SAU Watershed Planning Cells
- Prepare guidelines for area/drain-line treatment and specific interventions such wells or farm-ponds.

Back Office: Technology and Manpower

- Dedicated Back Office of GIS specialists required at WCD
- QGIS, GRASS softwares required

In Future

- Village or zone level rain-gauges will increase model accuracy significantly
- Model can be integrated with yield and economic parameters to allow for cropping pattern advisory. This is to be done in partnership with SAUs and WALMI
- Integration of ground water flows and improved zoning based on aquifer properties